Носители заряда, испускаемые эмиттером, проходят через базу, переход рп и поступают в слой коллектора2. Таким образом, коллектор является собирателем носителей заряда, обеспечивающих прохождение тока в цепи второго источника тока. При этом источник электрической энергии в цепи коллектора имеет э.д.с. Ек, которая во много раз превосходит э.д.с. Еэ источника энергии в цепи эмиттера. Небольшая э.д.с. Еэ вполне достаточна для создания тока необходимого значения в цепи эмиттера, так как прямое сопротивление его перехода является ничтожным. При отсутствии тока эмиттера практически не будет протекать ток и в цепи коллектора из-за большого обратного сопротивления перехода в ней. Если с помощью регулируемого резистора увеличивать ток э в цепи эмиттера, то возрастает число носителей заряда, испускаемых эмиттером, и повышается сила тока к в цепи коллектора. Иными словами, с увеличением тока эмиттера снижается электрическое сопротивление коллекторного перехода. Поэтому с помощью маломощной входной цепи эмиттера легко управлять значительно более мощной выходной цепью коллектора. Электрическая мощность этих цепей пропорциональна э.д.с. их источников энергии.

В рассмотренной схеме база транзистора является общей для цепей эмиттера и коллектора, а сам транзистор представляет собой полупроводниковый усилитель мощности.

В электрических схемах находят применение и два других способа включения транзистора: с общим эмиттером и общим коллектором, в зависимости от того, какой электрод транзистора является общим для входной и выходной электрических цепей. Например, схема с общим эмиттером обеспечивает наибольшее усиление по току в выходной цепи.